Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis

نویسندگان

  • Yingjian Li
  • Xiaoyan Wen
  • Youhua Liu
چکیده

During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after injury. Id1 was induced selectively in degenerated proximal tubule and collecting duct epithelia after injury and was present in both the cytoplasm and nucleus, suggesting shuttling between these two compartments. Interestingly, the upregulation of Id1 was associated with peritubular inflammation in mouse and human nephropathies. In vitro, Id1 potentiated NF-κB signaling and augmented RANTES expression in kidney epithelial cells, which led to an enhanced recruitment of inflammatory cells. Id1 also induced Snail1 expression and triggered tubular epithelial dedifferentiation. In vivo, genetic ablation of Id1 in mice reduced peritubular inflammation and decreased tubular expression of RANTES following ureteral obstruction. Mice lacking Id1 were also protected against myofibroblast activation and matrix expression, leading to a reduced total collagen deposition in obstructive nephropathy. Thus, these results indicate that Id1 shuttles between nucleus and cytoplasm, and promotes peritubular inflammation and tubular epithelial dedifferentiation, suggesting that these two events are intrinsically coupled during renal fibrogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pole, and Contribute to Crescent Formation. Recent Studies

support the second possibility [1–6]. It was reported that chemokines produced by proximal tubular cells promoted the infiltration [3,4]. Proximal tubular epithelial cells activate urinary complement proteins in situ and contribute to the mediation of tubulointerstitial injury [6]. The tubular epithelial cell is the major site of M-CSF production within the injured kidney; macrophage accumulati...

متن کامل

Inhibition of renal rho kinase attenuates ischemia/reperfusion-induced injury.

The Rho kinase pathway plays an important role in dedifferentiation of epithelial cells and infiltration of inflammatory cells. For testing of the hypothesis that blockade of this cascade within the kidneys might be beneficial in the treatment of renal injury the Rho kinase inhibitor, Y27632 was coupled to lysozyme, a low molecular weight protein that is filtered through the glomerulus and is r...

متن کامل

Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition.

Both peritubular inflammation and tubular epithelial-to-mesenchymal transition (EMT) are critical events during the pathogenesis of renal fibrosis. However, the relationship between these two processes is unclear. Here, we investigated the potential role of the vitamin D receptor (VDR) in coupling peritubular inflammation and EMT. In a mouse model of unilateral ureteral obstruction (UUO), loss ...

متن کامل

The renal stem cell system in kidney repair and regeneration.

The adult mammalian renal tubular epithelium exists in a relatively quiescent to slowly replicating state, but has great potential for regenerative morphogenesis following severe ischemic or toxic injury. Kidney regeneration and repair occur through three cellular and molecular mechanisms: differentiation of the somatic stem cells, recruitment of circulating stem cells and, more importantly, pr...

متن کامل

Tangeretin protects renal tubular epithelial cells against experimental cisplatin toxicity

Objective(s): Cisplatin is an effective antineoplastic agent; its clinical utility, however, is limited by a few salient toxic side effects like nephrotoxicity. This study aimed to determine the potential protective effects of tangeretin, a citrus-derived flavonoid, against renal tubular cell injury in cisplatin-induced renal toxicity of rats.Materials and Methods: Tangeretin was injected intra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012